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Abstract. An exact formulation of the framework of the so-called ‘local mean-field’ theory 
is given in a plasma with an arbitrary number of components and it is proved that an 
approximate theory with a frequency-independent ‘local-field’ correction factor Gii(4) has 
a basic difficulty. The difficulty is as follows. When GJq) is chosen so as to satisfy the third 
frequency moment sum rule, the theory has the unphysical result: (a) l / E ( q ,  0) does not 
vanish as q + 0 in an electrically neutral system without a uniform, neutralising background 
charge and (b) xs = 0 in a magnetically neutral system, e(q,  U )  and xS being the generalised 
dielectric function and the spin susceptibility, respectively. An approximation procedure 
for removing this difficulty is discussed. 

1. Introduction 

A response of a plasma to a weak external field is described by a response function. 
Transforming the response function appropriately, we can describe exactly the 
response in such a picture that the system responds to an effective field as if it were an 
assembly of free particles distributed in momentum space according to a real-particle 
momentum distribution function, where the effective field is the sum of the Hartree field 
and the so-called ‘local-field’ correction (see Nozieres and Pines 1958a, b). In this 
picture the response function is a functional of the real-particle mcmentum distribution 
function and the so-called ‘local-field’ correction factor (LFCF). 

In the random phase approximation (RPA) the effective field and the real-particle 
momentum distribution function are approximated by the Hartree field and the 
non-interacting-particle momentum distribution function, respectively. Since RPA was 
considered to be adequate only in the case of the weak coupling, how to proceed beyond 
RPA has become one of the problems of main concern for theoretical physicists, and 
various ‘local mean-field’ theories (LFT) have been proposed by Vashishta and Singwi 
(1972), Vashishta et a1 (1974), and many other workers. On the other hand, some 
structure of the LFCF has been also reported; Goodman and Sjolander (1973) and 
Sjolander (1974) found that in a uniform electron liquid with a positive background LFT 
with a frequency-independent LFCF necessarily violates either the spin-susceptibility 
sum rule or the third sum rule, and one of the present authors (Ginoza 1977) proved 
that in a two-component plasma such a LFT never satisfies the perfect screening sum rule 
and the third sum rule simultaneously. 
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Now, the electron liquid may be regarded as a ‘two-component’ system magnetic- 
ally; namely, spin-up and spin-down electrons. Though the discussion by Goodman 
and Sjolander and that by one of the present authors are concerned with the magnetic 
and electric responses, respectively, the latter is similar to the former in the sense that 
each discussion considers the two-component system and is closely related to a singular 
term in the third frequency moment of the response function. In fact, the singular term 
is typical for the response function of the two-component system. Furthermore, 
according to the physics behind the term investigated by Goodman and Sjolander, such 
a term may be characteristic of a response function of an arbitrary multi-component 
system. Therefore, these two apparently separate discussions may be treated from a 
unified point of view and further generalised to a single discussion of a plasma with an 
arbitrary number of components. The purpose of the present paper is to investigate the 
discussion from such a viewpoint. A discussion on removing the difficulty above will 
also be added. 

The electric- and magnetic-response functions may be described from the unified 
point of view by introducing the concept of subcomponent which will be defined in the 
next section. It will be proved that, when the LFCF is chosen so as both to be 
frequency-independent and to satisfy the third frequency moment in the system which 
is neutral both electrically and magnetically as a whole, the choice involves such an 
unphysical result as 

lim I/e(q,O) # 0 (1.1) 
q-ro 

and 
x s  = 0, 

where c (q ,  w )  and xs are the generalised dielectric function and the spin susceptibility, 
respectively. In a sense, this result may have already been suggested and our treatment 
may be somewhat mathematical. We would like to point out, however, that equation 
(1.1) is not true in the system with a uniform neutralising background charge even if it is 
a multi-component system. Applying the result to a two-subcomponent plasma to 
which the electron liquid with a uniform positive background and the two-component 
plasma consisting of spinless particles belong, we reach directly the discussions of 
Goodman and Sjolander and one of the present authors. 

In 92 ,  the concept of subcomponent will be defined and the expressions for 
frequency moments of a response function will be presented. The exact formulation of 
the framework of LFT will be given in 9 3. Equations (1.1) and (1.2) will be proved in 
0 4. In 9 5 ,  an approximation procedure for removing the unphysical result described 
above will be discussed. 

2. Frequency moments 

Let us consider a uniform, non-relativistic quantum plasma which is contained in a large 
box of unit volume with periodic boundary condition and is electrically neutral as a 
whole. We will regard only Coulomb interaction as the interaction between particles, 
and hence the z-component of spin-magnetic moment is conserved in the process of the 
interaction. We will use this quantity for specification of particles. This is useful 
because, as is seen in the following, it enables us to discuss the electric- and the spin 
magnetic-response functions from a unified point of view. Let the assembly of particles 
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specified by mass m,, charge e,, and the z-component of spin-magnetic moment p, be 
called the i-subcomponent. The system under consideration then has an arbitrary 
number of subcomponents, each being specified by an integer 1 , 2 , .  . , , n and i- 
subcomponent consisting of n, particles. 

Now, let us denote the destruction and creation operators for a particle with 
momentum k belonging to the i-subcomponent by C,(k) and Ct (k), respectively. The 
qth charge-density fluctuation operator of i-subcomponent is 

pl (q)=er  C c t ( k - q / ~ , ( k + q / 2 ) .  
k 

Let Vp"' (q, w )  be the amplitude of the potential of an external field with wavevector q 
and frequency w which would couple only with the i-subcomponent. The linear 
response of p, ( q )  to such fields is 

P:nd(4, w )  = c m q , w ) V ; " ' ( q ,  U), (2.1) 
I 

where D:,(q, w )  is a retarded response function, dependent on subcomponent, defined 
as 

Here (. . .) means canonical ensemble average and pi(q, t )  is the Heisenberg represen- 
tation of p i ( q ) .  Knowledge of this function permits us to obtain various response 
functions of the system. In particular, a generalised dielectric function ~ ( q ,  w )  and a 
spin magnetic response function ,yr(q, w )  are obtained from 

1 / 4 ? ,  w )  = 1 + u ( q )  c C Dil(4, w ) ,  ( 2 . 3 ~ )  

~ ' ( 4 ,  w )  = C AihjD:j(q, w ) ,  (2.3b) 

i j  

i j  

with o ( q )  = (471;/q2)(1 -aqo) and A i  = pi/ei. The spin susceptibility is then 

,ys = -1im xr(q, 0) .  (2.4) 
q- to  

Integrating equation (2.2) by parts successively and using the Heisenberg equation 
of motion, we obtain 

u(q)Dij(q, a)= C M1,ij(q)/wt+*, (2.5) 

Mi,ij(q) = u(q)([[~i(q), H I [ ,  ~ j ( q ) I ) ,  

1=1 

where 

[ p i ( q ) ,  H]t being the Ith order commutator of p i ( q )  with the Hamiltonian H. When we 
calculate the first three frequency moments, we have 

( 2 . 6 ~ )  

(2.6b) 
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K i  being the averaged kinetic energy of the i-subcomponent. Note that the term with rij  
in equation ( 2 . 6 ~ )  exists only in the multi-subcomponent system and that it becomes 
dominant in the small wavenumber region. The existence of this singular term 
introduces a basic difficulty into LIT as is proved in 0 4 .  

3. Exact formulation of LIT 

Let us define a Green function as follows: 

Ri:j(k; q9 t )  = -ie(t)(rc: (k - q / 2 ,  t)Ci(k + q / 2 ,  t ) ,  pj(q)I) .  

Making use of an equation of motion for this function, we obtain an equation for Dij as 

D:j(q, ~)=ai jD!O’(q ,  w)+~(4)DlO’(q, U )  DT,j(q, w)+Rij(q, w ) ,  (3.1) 
i’ 

where 

In order to proceed beyond RPA, we must determine Rii(q, w ) .  In this paper, however, 
we are interested in the structure of an effective field. Therefore we shall transform 
Rij(q, w )  into a new function Gii(q, w )  defined as 

Gij(q, w )  = -(l?&’)ij/(~D$’)). (3 .2)  
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In this definition, d is a matrix whose (i, j )  element is Rii(q, U ) ,  while 6-' is the inverse 
of a matrix 6 whose (i, j )  element is Dij(q, w ) .  

Let us investigate the physical content of this newly introduced function. Inverting 
equation (2.1) we get 

VP.'(q, w )  = (6- l ) i jp;nd(q,  U ) .  
i 

(3.3) 

Multiplying both sides of equation (3.1) by VFt (q, U ) ,  summing over j on both sides, 
and using equations (2.1), (3.2), and (3.3), we have 

pPd(q ,  w )  =Dyo'(q, w ) v ; "  (4, w ) ,  

where 

VP" (4, w )  = VPxt (4, w )  + ~ ( 4 )  p;nd(q, a) - (4) C Gij(q, w)p;nd (4, U). 
i i 

This result shows that the i-subcomponent responds to the effective external field given 
by VP" as if it were an assembly of free particles distributed in momentum space 
according to ni(k). The effective field consists of the Hartree field, which is the sum of 
the first and second terms, and the field resulting from correlation effects. The function 
Gij(q, w )  is thus a factor determining the latter field. Such a picture for the response 
mechanism of the system has given a useful framework for the treatment of the 
correlation effects. A theory based on this picture may be given by a self-consistent 
choice of ni(k) and G i i ( q , w ) .  We will, conventionally, call such a theory 'local 
mean-field' theory (LFT), though a field given by Gii may not be local in general. 

Eliminating Rij(q, w )  from equations (3.1) and (3.2), we obtain 

(6-')ij = vAij, 

where 

Aii(q, w ) =  Gii(q, w)-l+Sij/[u(q)DYo)(q, w)3* 

Dij = A j i / [ u  det(Aii)], (3.4) 

The expression of D:j then becomes 

where Aji is the cofactor of Aji in a matrixd whose (i, j )  element is Aii. This allows us to 
obtain expressions for various response functions in terms of Aij(q, U ) ;  namely Gij(q, w )  
and ni(k). In particular, the expression for ~ ( q ,  w )  is obtained by substituting equation 
(3.4) into equation ( 2 . 3 ~ )  and using the identity Xi C j  Aij = det(Aij + 1) -det(Aij) as 

l / ~ ( q ,  U )  = det(Aii + l)/det(Aij). (3.5) 
Now, the high-frequency expansion of equation (3.4) gives 

u(q)D2(q, w )  = S i j w ? ( l  k v ( k ) / n i ) / w Z + { M : ~ l ( q ) S i j + w f w ? [ l - G i j ( q ,  C O ) ] } / W ~ + .  . . . 

This must be equal to equation (2.5) because equation (3.4) is not an approximation at 
all. We thus obtain 

(3.6) 
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These equations give some constraints on the choice of n i ( k )  and Gij(q, U ) .  Equation 
(3.6) is a conservation law of particle number, while equation (3.7) gives the exact 
expression of Gij(q, w )  in the high-frequency limit. These are also necessary and 
sufficient conditions in order that D:i(q, w )  given by a particular choice of Gii(q, w )  and 
n i (k ) ,  assumed to be analytic in the upper half of the complex w-plane, satisfies the 
f-sum rule and third sum rule. 

4. The proof of the basic difficulty of a ~m 

Let us assume a theory in which LFCF does not depend on w, and let us denote this by 
Gij(q). If this theory satisfies the third sum rule, then Gij(q)  must be equal to equation 
(3.7). As is proved below, however, this choice involves the unphysical result like 
equations (1.1) and (1.2). Now, since the second term on the right-hand side of 
equation (3.7) and [u(q)DIo)(q, 0)l-I are of the order of q2 as q -+ 0, the above choice of 
Gii yields 

lim Aii(q, 0) = E j / Q i  - 1 + O(q2).  (4.1) 
q+o 

The proof of equation (1.1). From equations (3.5) and (4,1), we obtain 

lim 1 / ~ ( q ,  0) = [det(Fij/Qi)+O(q2)]/[det(F,j/Qi -1)+O(q2)I. 
q - 4  

Since 

CF,,=O, 
i 

as is seen from equation (3.8), we have 

Similarly, we can show with the use of equation (4.2) that 

det(F,j/Qi - 1) = (1/ fi Q i )  C Qi 
i = l  I 

where 

(4.2) 

= 0. 

(4.3) 
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QiAii * * * Q1Aln 

Qj-1Aj-11 * * * Qi-1Ai-1 n 

A n  A 1  . . .  
Qi+1Ai+ll * * Qi+lAi+ln 

Q A i  * * * QnAnn 

Therefore 

and equation (1.1) is proved. 

QnAn 1 

Substituting equation (4.1) into this equation for q + 0 and using equations (4.2) and 
(4.3), we obtain from equation (2.4) 
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where 
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Therefore equation (1.2) is proved. 

5. Discussion 

In the previous section, we have proved equations (1.1) and (1.2) as the basic difficulty 
of the theory whose LFCF does not depend on frequency w. This difficulty means that 
the w-dependence of the LFCF is essential for the proper description of both low- and 
high-w phenomena. Let us discuss how to take this w-dependence into account 
correctly. 

In order to obtain an idea on the correct consideration of the w-dependence of the 
LFCF, we investigate in some detail the origin of this difficulty in the case of the electron 
liquid with a uniform positive background charge. As is seen from the proofs in the 
previous section, the origin of the difficulty can be traced to the singular term of 
equation ( 2 . 6 ~ ) .  Such a term remains in the third frequency moment of xr(q, w ) ,  but not 
in that of D'(q, w ) .  The difficulty, corresponding to this, is only the magnetic one like 
equation (1.2). Note, however, that the disappearance of the electric difficulty like 
equation (1.1) is due to the rigidity of the background charge. Now, Goodman and 
Sjolander (1973) investigated whether the singular term of ~ ' ( 4 ,  w )  is closely related to 
the response of multi-pair excitations. On the other hand, Kalia and Mukhopadhyay 
(1974) pointed out the discrepancy of the theory of Vashishta and Singwi (1972) for 
D'(q, w )  from the scattering experiment data in the position and width of the peak of a 
dynamical structure factor. This may suggest the importance of the damping 
mechanism other than Landau damping. The multi-pair excitations can result in such a 
damping mechanism. Therefore, the origins of the difficulties of the theories for 
~ ' ( 4 ,  w )  and D'(q, w )  described above, where these functions can be given by the same 
Gmu, from a unified viewpoint, may be closely related to each other and the correct 
consideration of the effect of the multi-pair excitations may shed light on the solution to 
this problem. This leads us to taking the dynamics of two-particle correlation into 
account correctly. 

Now, equation ( 3 . 1 ~ )  describes the response of the correlation between the 
(ik)-particle and the (i'k')-particle to an external field and its equation of motion may 
govern the dynamics of two-particle correlation. When we attempt to solve this 
equation, the problem of how to treat the term involving the Coulomb interaction 
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Hamiltonian H I  may arise. Here, we shall take the following approximation: 

[?ii,(k, k’; 4, q ’ ) ,  HI]= 1 u(q”){[?ii’(k, k ‘ ;  q,4’),  p(-q”)I~(q”)  
d’ 

+~(q”)[+ii’(k,  k’;  49 q ’ ) ,  P(-Q”)II 
+ v ( / q  +q’l)([?ii,(k, k’;  4, q ’ ) ,  p ( -q  -q’)I)p(q + q ’ ) ,  

where p ( q )  = X i  p i ( 4 ) .  The result obtained with this approximation has properties as 
follows: 

(a) the w-dependence of LFCF is taken into account so that the first and third 
frequency moment sum rules are satisfied and the unphysical result like equations (1.1) 
and (1.2) does not arise; 

(b) the expression of LFCF obtained is exact for sufficiently large q or w ; 
(c) from the result for sufficiently large q we can obtain the well-known relation 

[agi j ( r ) /8r] ,=o = gii(r = O)/aii, 

where aii = ( l /mi  + l /mj ) / (2e ie i ) ;  
(d) the damping mechanism other than Landau damping is taken into account. 
Therefore, the result may have the correct w-dependence of the LFCF. 
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